Domination game on paths and cycles
نویسندگان
چکیده
منابع مشابه
On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles
Let G be a graph. A 2-rainbow dominating function (or 2-RDF) of G is a function f from V(G) to the set of all subsets of the set {1,2} such that for a vertex v ∈ V (G) with f(v) = ∅, thecondition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled, wher NG(v) is the open neighborhoodof v. The weight of 2-RDF f of G is the value$omega (f):=sum _{vin V(G)}|f(v)|$. The 2-rainbowd...
متن کاملSplit Domination in Normal Product of Paths and Cycles
A dominating set D ⊆ V is a split dominating set of a graph G = (V,E) if the induced subgraph of 〈V −D〉 is disconnected. The split domination number γs(G) is the minimum cardinality of a split dominating set of a graph G. In this article, we establish some results on split domination number of Pm⊕ Pn, Pm ⊕ Cn and Cm ⊕ Cn.
متن کاملCriticality indices of Roman domination of paths and cycles
For a graph G = (V,E), a Roman dominating function on G is a function f : V (G) → {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by γR (G). T...
متن کاملDomination game on forests
In the domination game studied here, Dominator and Staller alternately choose a vertex of a graph G and take it into a set D. The number of vertices dominated by the set D must increase in each single turn and the game ends when D becomes a dominating set of G. Dominator aims to minimize whilst Staller aims to maximize the number of turns (or equivalently, the size of the dominating set D obtai...
متن کاملA Note on the Domination Number of the Cartesian Products of Paths and Cycles
Using algebraic approach we implement a constant time algorithm for computing the domination numbers of the Cartesian products of paths and cycles. Closed formulas are given for domination numbers γ(Pn Ck) (for k ≤ 11, n ∈ N) and domination numbers γ(Cn Pk) and γ(Cn Ck) (for k ≤ 7, n ∈ N).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ars Mathematica Contemporanea
سال: 2017
ISSN: 1855-3974,1855-3966
DOI: 10.26493/1855-3974.891.e93